1,607 research outputs found

    Shape Memory Assisted Self Healing (Smash) Polymeric and Composite Systems

    Get PDF
    My research aims to develop a novel approach that uses the shape memory (SM) effect to aid self healing (SH) polymeric systems that are able to simultaneously close and re-bond cracks with a single thermal stimulus. This new concept is termed shape memory assisted self healing (SMASH). Additionally, a new type of shape memory termed reversible plasticity shape memory (RPSM) was also developed where both the elastic and plastic deformation found after deformation completely recover upon a thermal stimulation. I aim to utilize a broad range of polymeric and composite systems that include a single phase semi-crystalline system, a single phase amorphous blend, and a combination of these two polymers in a composite elastomer system to prove the versatility of the SMASH and RPSM effects. Chapter 1 gives a polymer science background along with SM and SH material overview. Chapter 2 discusses the fabrication and analysis of miscible blends that show the SMASH and RPSM effect using a semi-crystalline polymer, poly(e-caprolactone) (PCL) to construct a SM PCL network (n-PCL) and PCL thermoplastic used as the SH agent (l-PCL). The PCL thermoplastic SH agent interpenetrated the n-PCL for form a single phase semi interpenetrating polymer network (SIPN). Films were made for testing to prove the SM and SH effects by varying the amount of SM network and SH agent to optimize both effects. Thermo-mechanical, tensile, and SH experiments were conducted to study the fixing, recovery and healing properties of the polymeric system. Chapter 3 focuses on a unique system for the fabrication of clear thin SMASH SIPN coatings that were developed for optical industrial applications. Here, an amorphous polymer composition, poly(tert-butyl acrylate) (poly(tBA)), was used in a blend of two forms, a network form for shape memory (n-tBA) and a linear form for self-healing (l-tBA), that, together, form a single phase SIPN. Thermal, thermo-mechanical, SM and SH scratch experiments were conducted to investigate both SM and SH mechanisms as influenced by the relative concentrations of n-tBA and l-tBA in the SIPN materials. Chapter 4 introduces for the first time an innovative smart polymeric soft material where aligned nanofibers are used to construct anisotropy embedded in an elastomeric matrix. This system, termed Anisotropic Shape Memory Elastomeric Composite (A-SMEC) was investigated for RPSM and SMASH properties. In addition, the anisotropic mechanical and shape memory properties were investigated and interpreted in light of the underlying structure. Chapter 5 builds upon the results of Chapter 4, presenting the fabrication and testing of laminated A-SMEC biomorphs that were designed to exploit anisotropic in RPSM behavior to yield predictably curled and twisted structures upon deformation. More specifically, the out-of-plane curvature and pitch were analyzed as a function of biomorph orientational lay-up. All polymeric systems described in this dissertation are examples of smart polymers that can be used to tailor mechanical performance while introducing new phenomena, such as self-healing, RPSM, and stretch-induced twisting. Chapter 6 discusses the conclusions followed by future work that are sub-sectioned for each chapter of the dissertation

    AVCOAT Density Characterization for Orion Multi-Purpose Crew Vehicle

    Get PDF
    The Orion Multi-Purpose Crew Vehicle (MPCV) will transport four crew members to and from lunar-class orbital destinations. The first orbital Exploration Flight Test (EFT-1) is scheduled for December 2014 and will provide valuable data on several systems, including the heat shield. The heat shield material is AvcoatTM, a mid-density ablator. Specifically, the heat shield contains a fiberglass-phenolic honeycomb structure filled with an ablative epoxy novolac resin. Post-flight characterization of the EFT-1 thermal protection system will be conducted in order to study the material response and measure the char front of the material. Avcoat density profiling will be conducted to study three critical material zones: char, pyrolysis, and virgin states as a function of material depth. As part of a ground test campaign, Avcoat coupons are tested at the NASA Ames Research Center Arc Jet Complex. The test campaign is set forth to study material response based on environments, perform Avcoat material density characterization, and compare the char depths from the HEAT sensor and density profiling studies. These investigations will then be compared to flight data in order to improve upon TPS material response models

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    CC8 MRSA Strains Harboring SCCmec Type IVc are Predominant in Colombian Hospitals

    Get PDF
    BACKGROUND: Recent reports highlight the incursion of community-associated MRSA within healthcare settings. However, knowledge of this phenomenon remains limited in Latin America. The aim of this study was to evaluate the molecular epidemiology of MRSA in three tertiary-care hospitals in Medellín, Colombia. METHODS: An observational cross-sectional study was conducted from 2008-2010. MRSA infections were classified as either community-associated (CA-MRSA) or healthcare-associated (HA-MRSA), with HA-MRSA further classified as hospital-onset (HAHO-MRSA) or community-onset (HACO-MRSA) according to standard epidemiological definitions established by the U.S. Centers for Disease Control and Prevention (CDC). Genotypic analysis included SCCmec typing, spa typing, PFGE and MLST. RESULTS: Out of 538 total MRSA isolates, 68 (12.6%) were defined as CA-MRSA, 243 (45.2%) as HACO-MRSA and 227 (42.2%) as HAHO-MRSA. The majority harbored SCCmec type IVc (306, 58.7%), followed by SCCmec type I (174, 33.4%). The prevalence of type IVc among CA-, HACO- and HAHO-MRSA isolates was 92.4%, 65.1% and 43.6%, respectively. From 2008 to 2010, the prevalence of type IVc-bearing strains increased significantly, from 50.0% to 68.2% (p = 0.004). Strains harboring SCCmec IVc were mainly associated with spa types t1610, t008 and t024 (MLST clonal complex 8), while PFGE confirmed that the t008 and t1610 strains were closely related to the USA300-0114 CA-MRSA clone. Notably, strains belonging to these three spa types exhibited high levels of tetracycline resistance (45.9%). CONCLUSION: CC8 MRSA strains harboring SCCmec type IVc are becoming predominant in Medellín hospitals, displacing previously reported CC5 HA-MRSA clones. Based on shared characteristics including SCCmec IVc, absence of the ACME element and tetracycline resistance, the USA300-related isolates in this study are most likely related to USA300-LV, the recently-described 'Latin American variant' of USA300

    The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion

    Get PDF
    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the “Fusarium solani species complex”. Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Get PDF
    Christian R. Voolstra is with King Abdullah University of Science and Technology, Shinichi Sunagawa is with the European Molecular Biology Laboratory, Mikhail V. Matz is with UT Austin, Till Bayer is with King Abdullah University of Science and Technology, Manuel Aranda is with King Abdullah University of Science and Technology, Emmanuel Buschiazzo is with University of California Merced, Michael K. DeSalvo is with University of California San Francisco, Erika Lindquist is with the Department of Energy Joint Genome Institute, Alina M. Szmant is with University of North Carolina Wilmington, Mary Alice Coffroth is with State University of New York at Buffalo, Mónica Medina is with University of California Merced.Background -- Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings -- We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance -- This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.This work was supported by DEB-1054766 to M.V.M. and National Science Foundation grants IOS-0644438 and OCE-0313708 to M.M., and by a Collaborative Travel Fund to C.R.V. made by King Abdullah University of Science and Technology (KAUST). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome.</p> <p>Methods</p> <p>Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed.</p> <p>Results</p> <p>Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson).</p> <p>Conclusions</p> <p>The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.</p
    corecore